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ABSTRACT

Self-supervised learning is emerging as a promising class of unsupervised learning meth-

ods that make the best use of available data for representation learning. Specifically in the

medical imaging domain - due to the limited availability of large amounts of annotated data,

self-supervised learning can help pave way to successful applications of deep learning meth-

ods for clinical use. However, most existing self-supervised algorithms employ generic,

standalone pretext tasks that aren’t specifically designed to learn morphological represen-

tations or representations of positional relationships among different tissues present in an

image sample. Hence, they learn medically inexplicable representations which renders even

state-of-the-art models as black-box systems unreliable for practical clinical use. For reli-

able applications, clinical interpretability of deep learning systems becomes imperative in

medical diagnostics. In this work, along with fully supervised models that perform seman-

tic segmentation and localization of areas of interest, we also propose novel self-supervised

learning methods by using clinical knowledge as motivation while designing different pre-

text tasks for learning reliable representations. We evaluate these methods on a novel dataset

of histological images of the human duodenum that our team curated along with expert gas-

troenterologists, pathologists at AIIMS-New Delhi. We show promising results with these

new self-supervised learning approaches.
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Chapter 1

Introduction

1.1 Self Supervised Learning

Deep convolutional neural networks (CNNs) perform based on the power of CNNs and the

amount of training data available. Different models have been developed to increase the

power of CNNs, and larger and larger datasets are being collected for a variety of tasks these

days. Networks like DenseNet [1], ResNet [2], GoogLeNet [3] ,VGG [4], AlexNet [5] and

large scale datasets like ImageNet [6], Coco [7], OpenImage [8] have been proposed for

training very deep CNNs.

Since CNNs require massive sets of annotation rich training data to learn discriminative

representations, collecting such large sets of well-annotated data is prohibitively expensive

due to its tenuous nature specially in the field of medical imaging across different modalities.

Fortunately, in recent years, advanced methods on unsupervised learning have been devel-

oped that learn very strong representations without the need of human annotated data. One

of the subsets of such unsupervised learning methods is called as self-supervised learning

(SSL).

Self-supervised learning exploits unlabelled data to learn image abstractions. Specifically

in computer vision, the goal of self-supervision is to construct image representations that

are semantically meaningful without their semantic annotations. Self-supervision is a good

method to initialize model parameters for training annotation-efficient downstream models

for image classification, object detection, semantic segmentation and panoptic segmentation.
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Pre-training tasks are tasks that have been pre-designed for deep networks to solve.

Learning the objective functions for these tasks allows you to learn the visual features (eg:

Image reconstruction). These tasks can be predictive tasks, generative tasks, contrastive tasks

or different combinations of these individual task types. They must be designed by taking

into consideration the properties of images like colour, structure, content and semantics to

ensure optimal learning.

Downstream tasks are computer vision tasks that can be used to evaluate the quality of

visual features learned by the CNNs by self-supervised learning. Generally, the downstream

tasks require human-annotated data for training. To solve these tasks, pre-trained models

help immensely when the training data is scarce.

For self-supervision on image data, different pre-training tasks share two common prop-

erties:

• By solving these tasks, the deep models must be able to capture visual features in the

data.

• The supervisory signals needed to train the models must be generated from the data it-

self (without human annotations) by leveraging the colours and/or structural properties

of images.

Figure 1.1 illustrates the general pipeline for self-supervised learning. Training SSL

models typically consists of two stages. The first stage is the pre-training in which the CNNs

are tasked with solving a pre-defined task. These tasks are designed such that the CNNs

learn visual features from the images by solving them. In that, the initial blocks of the

CNN learn kernels that capture general features such as textures, edges, and corners while

the deeper blocks learn more fine-grained features that maybe useful for downstream tasks.

After the pre-training, the learnt features can be transferred to downstream tasks. Using the

self-supervised model as pre-trained model for the downstream tasks is advantageous when

the labelled dataset available for the downstream tasks is limited. It improves performance

and reduces overfitting.
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Figure 1.1: A skeletal workflow of self-supervised learning. By training CNNs to complete

a pretext task, the visual feature is learned. The learned parameters are then used as a pre-

trained model after self-supervised pretext task training is complete. In the fine-tuning phase,

these can be applied to additional computer vision tasks.

1.2 Object detection

To understand an image completely, it isn’t enough to just classify them. It is important

to find objects and locations of each objects in the image. This task of determining the

contents and locations of different objects in a given image is called as object detection. It is

a coarse prediction task that involves taking an image input and classifying certain regions as

belonging to different categories based on visual features. Additionally, regressing bounding

box coordinates on the classified objects.
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Figure 1.2: Pictorial representation of object detection

1.3 Semantic Segmentation

In modern medical imaging, semantic segmentation is used on 2D images, volumetric im-

ages, and videos. It is one of the major issues facing computer vision, and its resolution

would improve the ability to better scene understanding. In recent years, increased number

of applications of computer vision benefit from scene understanding. This emphasizes how

crucial semantic segmentation is as a fundamental idea in computer vision.

Earlier, researchers utilized classical computer vision and machine learning techniques

to address this issue. But, with the advancement of deep learning, CNNs are being used to

tackle semantic segmentation. These deep and efficient networks are shown to perform faster

than traditional methods surpassing them in accuracy by large margins.

The high level task of semantic segmentation includes classification of image pixels into

different semantic categories for given image data with different semantic pixel contents.

Some applications of semantic segmentation in computer vision include autonomous

driving [9], [10], [11], Human-machine interaction [12], computational photography [13],

augmented reality and many more. Figure 1.3 illustrates the task of semantic segmentation.

Generally, CNNs are used for semantic segmentation of biomedical images. These deep

networks assign values to each pixel of an image that represents its probability of belonging

to a certain semantic class. The probability of a pixel belonging to a certain class may not

always be independent of the class to which a different pixel in the image belongs to. They

are produced by a set of weights and activations in the network that are learnt by minimizing

a loss (Typically Dice loss, Cross-Entropy loss etc). These measure the overlap between
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Figure 1.3: Pictorial representation of semantic segmentation.

the ground-truth pixels with the corresponding pixels in the predicted segmentations. While

calculating such a loss, each pixel is considered independently.

Since pixel semantics are highly localised and dense in nature, it is particularly a chal-

lenging task to introduce global semantics in the training process of CNNs that will produce

globally coherent segmentations specifically for medical data with limited annotations and

high variability. The different instances of objects belonging to the same class exhibit a high

degree of variation in terms of shapes and sizes. For some modalities of medical images

and diagnostics, there is often a large degree of inter-observable variability in classifying

different objects in a given image even among highly trained and experienced doctors.

1.4 Celaic Disease

Celiac Disease is a chronic systemic autoimmune disorder induced by a protein called gluten

in several food substances like wheat and barley. If patients having a predisposition to this

disease consume gluten, an immune reaction is triggered in their small intestines. Overtime,

this reaction damages the finger-like structures called villi on the inner lining of the small

intestine preventing them from absorbing certain nutrients (malabsorption). The damage to

the small intestine can cause bloating, diarrehea, fatigue, weight loss and can lead to serious

complications.
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Figure 1.4: Illustration of Celiac Disease. The Villi are finger-like projections as indicated.

The epithelial layer is the outer layer of the villi and the egg shaped tissues under the villi

are called crypts.

Screening studies in different populations have shown that the prevalence of celiac dis-

ease is around 1% or more in both the United States and Europe [14], [15], [16], [17]. This

means that, for every patient with the diagnosis of celiac disease, 3–10 remain undetected.

Moreover, the prevalence of detected cases of celiac disease is much lower, from 0.27% to

0.02%. In the wheat eating north Indian region, 1 person in every 96 people have celiac

disease that largely go undetected [18].

The investigation for Celiac Disease is done by obtaining a biopsy from the small intes-

tine of a patient. Hematoxylin and eosin (H&E) stain is used to prepare histological slides for

interpreting the biopsy under a microscope. An expert pathologist looks at these slides and

reports their findings based on a particular histological classification protocol and suggests

treatments if the patient has the disease. Figure 1.4 illustrates a typical histological image of

the human duodenum on the left. Individual tissues in the image are indicated in an animated

image on the right for clarity.

Existing histological classification methods for the interpretation of small intestinal biop-

sies are based on qualitative parameters with high intraobserver and interobserver variations.

Recently a group of researchers at the All India Institute of Medical Sciences, New Delhi

(AIIMS, New Delhi) proposed a novel quantitative histological (Q-histological) classifica-

tion system specifically for Celiac Disease. It is shown to be better than existing classification

systems [19].
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The current work was done in collaboration with researchers at AIIMS. Out of our fruitful

collaboration, we have developed a completely new duodenal histopathology dataset that is

richly annotated. The technical work focuses on developing deep learning algorithms to

assist the clinicians follow the Q-histological rules for accurate detection and grading of

duodenal biopsies. Additionally, we explore new self-supervised methods to improve the

model performance with unannotated data.

This thesis records the following contributions:

• Creation of a novel duodenal histopathology dataset– Careful annotations were done

by marking out precise boundaries of different important tissues in a given biopsy.

Based on the orientation, shape and integrity of different tissues, areas of clinical in-

terest were marked. All the annotations used for this work have been verified for

correctness by the pathologists at AIIMS.

• A software solution to mark areas of clinical interest– A fully supervised algorithm

was designed to detect areas of clinical interest enabling meaningful interpretation of

histological images.

• Novel self supervised learning methods– Two novel self-supervised learning methods

are proposed for meaningful semantic segmentation using unlabelled histological im-

ages.

1.5 Tissue Morphology in Clinical Histopathology

In the field of pathological analysis of histological images of human tissue resections, the

tissue morphology is of utmost importance to the clinician in the diagnostic process. In that,

there are very specific structural arrangements that are indicative of the underlying cause

or mechanism of disease. These structural eccentricities become very pronounced in H&E

stained tissue slides and allows a well-trained pathologist to arrive at a diagnosis. The di-

verse morphologic patterns thus observed under a microscope arise as a result of the intricate

biological interplay underlying the specimen’s presentation [20]. Moreover, in understand-

ing these morphologies, there lies a potential to directly infer the molecular phenotypes [21]
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which are indicative of the genotype that causes a particular disease. Although, the im-

portance of tissue morphologies is widely acknowledged by the histopathologists, its inter-

pretation during clinical diagnostics suffers from intra and inter observer variability with a

constant struggle to precisely define and categorize meaningful morphologies [22].

The application of deep learning to the field of computational pathology is an exciting

intersection but it begets a very important question for computer scientists - is it possible to

represent the symbolic notions of structure, shape and spatial arrangement of tissues using

compact codes (as computed by gradient descent) in such a way that allows for easy retrieval

and interpretation of the original symbols?

This body of work is an attempt at finding some answers to this question. Then, there

are other limitations in this field posed by sparsity of data and/or annotations that need no

introduction.

Here, we systematically train a self-supervised learning (SSL) model which specifically

incorporates in its learning mechanism, a general notion of spatial arrangement of many

meaningful parts that become meaningless when their arrangement is perturbed. While this

model learns to reconstruct these parts from a large corpus of histopathology image data,

it becomes familiar with morphologies that may occur in a variety of H&E stained tissue

specimen. This may prove useful while retraining the model for tangible downstream tasks

like semantic segmentation of specific tissues in a specimen or classifying the disease grades

directly from the histopathology image.

1.6 Organization of the Thesis

Chapter 2 includes the details about the annotation process and the recently proposed Q-

histological rules for classifying Celiac Disease. In Chapter 3, supervised baselines are

discussed along with performance metrics used to evaluate the model. Additionally, two

unique supervised approaches are discussed that propose bounding boxes around the areas

of clinical interest by using segmentation features. The chapter is concluded with a discus-

sion on why self-supervised learning methods are useful. In Chapter 4, literature survey of

different popular self-supervised learning methods are presented. We justify our approach in

8



the context of encoding image semantics in representations of medical images. In Chapter 5,

we propose three novel self-supervised learning methods. Finally, Chapter 6 summarizes the

entire work and also provides the directions for future work.
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Chapter 2

Data annotation and the Q-histological

classification system

2.1 Data Annotation

The data collection was approved by the Institutional Ethical Committee (IEC-858 dated

16/12/2019) at the All India Institute for Medical Sciences, New Delhi.

In the first phase of annotation, 1600 histological images were collected from the de-

partment of pathology. The images were captured through an Olympus BX50 microscope

at 4× zoom using a DP26 camera. Out of these, 800 images have been annotated using the

labelme tool. Out of the 800 images, 573 images have been verified for correctness by the

pathologists. In each image, Good Villi, Denudated Villi, Good Crypts, Circular Crypts,

Epithelium, Brunner’s Glands, Muscularis Mucosa and the Interpretable Region were an-

notated. The histological conditions for an Interpretable Region are explained in the next

section. Figure 2.1(a) shows an overlay of annotations on the original histological image.

Table 2.1 contains the details of the first phase of annotations.

In the second phase of annotations, images were captured at 20x zoom. The images

were taken mostly around the Villi region of the biopsy slide. A total of 65 images were

annotated. In each image, Intra-Epithelial Lymphocytes (IEL) and Epithelial Nuclei were

annotated. Refer Table 2.2 for details. Figure 2.1(b) shows an example of IEL annotations

in the Epithelial region.

10
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S.No Tissue Name Total Annotated

1. Good Crypts 10912

2. Circular Crypts 10595

3. Good Villi 714

4. Denudated Villi 787

5. Epithelium 1957

6. Muscularis Mucosa 618

7. Brunner’s Gland 262

8. Interpretable Region 479

9. Slanted Villi 28

Table 2.1: Annotation details of 573 verified images. These images were used to train the

cascaded network which performs tissue segmentation and localizes regions of clinical im-

portance.

(a) (b)

Figure 2.1: (a) Green - Good Villi. Red - Crypts. Cyan(or blue) - epithelial layer. The

bounding box denotes the Area of clinical interest or the Interpretable Region. (b) IELs

annotated using blue bounding boxes. Brown borders denote the epithelial regions at the tip

of Good Villi.
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S.No Tissue Name Total Annotated

1. Intra-Epithelial Lymphocyte 2090

2. Epithelial Nuclei 6518

3. Epithelial Area 94

Table 2.2: Second phase annotation details. 65 images were annotated at a deeper resolution

to mark Epithelial area, IELs and Epithelial Nuclei.

2.2 The Q-histological classification rules for grading biop-

sies of small intestine

Existing histological classification systems for assessing Celiac Disease in the small intestine

are extremely qualitative in nature. Due to this, there exists a large inter-observer variability

among pathologists in most diagnostic parameters except for Intra-epithelial lymphotcyte

count. Recently, [19] proposed a quantitative classification system which was shown to

be the better than earlier systems. There is very low inter-observer disagreements in this

method and thus, ideal for clinical application. Since the nature of the diagnostic method

is quantitative, using computational methods to analyse biopsies and measure the diagnostic

parameters becomes possible. Table 2.3 lists the quantitative parameters corresponding to

different grades of celiac disease.

Class IEL count /100 Enterocyte cells Villous Height Change Cd:Vh ratio

Type 0 < 25 – –

Type 1 ≥ 25 0.7 < 0.5

Type 2 ≥ 25 ≤ 0.7 ≥ 0.5

Type 3 ≥ 25 ≤ 0.7 ≥ 0.5

Table 2.3: The Q-histological parameters for Celiac Disease classification (Duodenum)
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2.3 Discussion

Due to the highly quantitative nature of the problem, computer vision algorithms can be used

to measure the parameters used for grading biopsies. More concretely, given a biopsy image,

our algorithm must accurately:

• Segment out important tissues like Good Villi, Good Crypts and Epithelium.

• Mark areas of interpretability with bounding boxes in regions where all the three men-

tioned above are co-located.

• Filter out areas where the co-location of these tissues exits but an additional Brunner’s

Gland is present.

• Measure the heights of each Good Villous and depths of each Good Crypt present in

the area of interpretability.

• Count the IELs present in the Epithelial region of the Good Villi.

13



Chapter 3

Supervised learning: Baselines and

methods

3.1 Introduction

The algorithm development was undertaken in stages. The first stage of the project was

to develop a model that could perform semantic segmentation of tissues and propose areas

of clinical interpretability. Figure 3.1 illustrates this problem pictorially. Given an input

image, a segmentation model has to accurately identify individual tissues. Additionally, it

should automatically propose areas of clinical interest based on their co-location. Several

approaches were designed to perform this task. This chapter records them in detail.

3.2 The Fully Supervised Baseline

We compared U-Net [23], ResU-Net++ [24] and Attention U-Net [25] on the segmentation

task of three semantic classes of the Duodenal histology dataset - Good Crypts, Good Villi

and Epithelium. Attention U-Net empirically performed better than the other two. Hence, it

is chosen as the baseline model for our experiments. It is a fully convolutional network with

an encoding path and a decoding path with Attention Gates connected with skip connections

at corresponding layers of each paths. The performance comparison with other segmentation

models of the Attention U-Net on three classes is given in Table 3.1.
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Figure 3.1: Pictorial representation of semantic segmentation and localization of areas of

interpretability.

Model Good Crypts Good Villi Epithelium Average

U-Net [23] 50 51 56 52

ResU-Net++ [24] 53 55 57 55

Attention U-Net [25] 59 57.7 61 59

Table 3.1: Performance comparison of various baseline models on three classes of the Duo-

denal Histology dataset. Reported scores are Dice Coefficients on 60 test images.

3.3 Dataset, Loss Function and Evaluation Metric

We used 300 fully annotated histological images for training the fully supervised models.

A separate batch of 40 images were used for validation during training. For model evalua-

tion, additional 60 images were used. While training the cascaded model, the classes Good

Crypts and Circular Crypts were combined into a single class - Crypts. The cascaded model

was trained to segment Good Villi, Crypts, Epithelium and Brunner’s Gland. Whereas, the

segmentation path in the Joint Learner method segmented only Good Villi, Good Crypts and

Epithelium and used the intermediate features in the decoder for bounding box regression.

For both the models, the performance metric used for model evaluation was the Dice Coeffi-

cient given in Eq 3.3. For the cascaded model, among different loss functions tried, we found

that the Focal Tversky loss performed the best at appropriately weighting highly unbalanced

classes like Brunner’s Gland. Empirically, it was also the best loss function to avoid False
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Figure 3.2: visual illustration for calculating Dice Score.

Negatives since it gives a higher weightage to them during the loss calculation. The Focal

Tversky loss is given by:

FTL = (1− TI)γ (3.1)

Where γ = 1.0 and TI is the Tversky Index as calculated by Equation 3.2 with α = 0.7

TI =
TP

TP + αFN + (1− α)FP
(3.2)

The evaluation metric used to test the performance of the models was Dice Coefficient.

Figure 3.2 illustrates the metric visually. In statistical terms, it is called the F1 score. given

two sets A and B, the Dice coefficient can be written as:

Dice coefficient =
2|A ∩B|
|A|+ |B|

(3.3)

Dice Score for Object Detection: Popularly, the Mean Average Precision (mAP) metric

is used to evaluate object detection models. However, since our task is to identify tissue

regions inside bounding boxes, we employ the Dice Score to evaluate object detection quality

in a special way. Figure 3.3 illustrates this method clearly. Once an object detection model

predicts bounding boxes, we post process the regions inside them to only retain pixels that

belong to the biopsy by discounting the background. Similar post processing is done for

regions inside ground truth boxes. Then, the Dice score is measured between corresponding

boxes. This makes the evaluation process precise and accurate.
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Figure 3.3: visual illustration for evaluating object detection using the Dice Score. The red

box is the ground truth. The green boxes represent the output predictions from an object

detection algorithm. We process the whole image to retain only those pixels belonging to the

biopsy and mask the background. Regions inside individual boxes are cropped and the Dice

Score is calculated.

3.4 Methods

We propose two fully supervised methods to perform the task of tissue segmentation and

localization of interpretable areas. We begin our design by understanding the relationships

between tissues in the biopsy and their relevance for marking the area of interpretation. The

area of interpretation should contain pronounced villi structures, elongated crypts that are

oriented towards the villi and intact epithelial lining on the periphery of the villi.

3.4.1 The Joint Learner

Our first method is called the Joint Learner. It uses these spatial relationships to propose

areas of interpretation by tapping features from the intermediate layers of the segmentation

decoder. The resulting model becomes interpretable in the sense that, the bounding boxes

proposed by the model has a dependency on the segmentation of important tissues and their

implicit relationships. Figure 3.4 shows the block diagram of the Joint Learner.

In contrast to blackbox Deep Learning models that take image inputs to provide bounding

box predictions like FasterRCNN [26] , Yolov3 [27] etc, the Joint Learner incorporates some
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Figure 3.4: Model architecture for the Joint Learner. Features from the decoder of the At-

tention U-Net are tapped and used to regress bounding boxes.

Model Dice Coefficient

EfficientDet [28] 0.66

Yolov3 [27] 51

FasterRCNN [26] 54

Joint Learner 0.56

Table 3.2: Performance comparison of Joint Learner with prior arts.

intuition into the learning process that is clinically relevant. Therefore, outputs of this model

are relatively more explainable. The performance comparison of the Joint Learner with

different localization models is given in Table 3.2.

Although EfficientDet [28] performs better at localising the interpretable regions, the

Joint Learner’s interpretability and its upward performance in comparison with Yolov3 and

FasterRCNN is promising. Incorporation of clinical knowledge into the learning mechanism

of deep learning models is of paramount importance. The implementation of this method

can be found here. Some output images from the Joint Learner are shown next.
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Figure 3.5: Some outputs from the Joint Learner Network
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3.4.2 The cascaded model

The second method we propose is a cascaded system of two segmentation models and a

localization model as shown in Figure 3.6. Given a histological image - firstly, a segmen-

tation network identifies important tissues like Villi, Crypts and Epithelial layers using an

Attention-Unet. Then, another segmentation network segments the edges of crypts. These

edges are used in circularity analysis of crypts to differentiate between Good Crypts and Cir-

cular Crypts. Secondly, the segmentation outputs after filtering out Circular Crypts are fed

to an Efficientdet and localization of regions with clinical importance is done. The region

proposals along with tissue segmentations are at par with human-level performance. The

performance metrics for image segmentation of the cascaded model on different data-splits

is given in Table 3.3. The average Dice score obtained on the test set for localization is

54.52%. The implementation can be found here.

Figure 3.6: Cascaded system for tissue segmentation and bounding box regression. The

segmentation outputs from Eθ1 and Dθ1 along with detected crypt edges from Eθ2 and Dθ2

after preprocessing are used for Bounding box regression using an EfficientDet (Eloc).

Circularity analysis of Crypts: Crypts are relatively small, densely packed structures in
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Split name Good Crypts Good Villi Epithelium Brunner’s Gland Average Dice

Train 71.1% 71.4% 69.7% 91.1% 75.8%

Validation 67.4% 58% 67.7% 86.3% 69.8%

Test 68% 60.3% 63.8% 85.3% 69.3%

Table 3.3: Dice scores of the cascaded system on different data splits. We used 60 images

for testing, 40 images for validation and 300 images for training our algorithm.

duodenal biopsies. One important morphological feature that is important to identify area of

interpretability is the shape of crypts. The crypts are required to be elongated (test-tube rack

like) in shape and they should be oriented towards the Good Villi for clinical interpretation.

If a biopsy region contains round crypts, their interpretation is not possible. Figure 3.8

illustrates the differences in circular crypts and elongated crypts.

(a) (b)

Figure 3.7: (a) A biopsy image containing elongated crypts (Good Crypts) oriented towards

Good Villi. (b) A biopsy image containing only Circular Crypts not fit for interpretation.

The segmentation stage in the cascaded model predicted Good Crypts with very less

recall. Therefore, we combined the Good Crypts and Circular Crypts into a single class -

Crypts which improved overall segmentation performance. The second stage in the cascaded

model is exclusively to predict crypt edges as shown in Figure 3.6. These edge predictions

are subtracted from the crypt segmentations from the first stage to obtain the inner pixels of

crypts. The inner pixels are used initially to distinctly identify individual crypts using the
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(a) (b)

(c) (d)

Figure 3.8: (a) A biopsy image containing two types of crypts. (b) Segmented crypts. (c)

Good Crypts identified after circularity analysis. (d) Circular Crypts identified after circular-

ity analysis.

Watershed Algorithm. Subsequently, ellipses are fit around each crypt and the eccentricities

are measured using Eq 3.4

Eccentricity(e) =
Length of Minor Axis
Length of Major Axis

(3.4)

We then define a threshold on e. If 0.5 < e < 1.0, then the corresponding crypt is predicted

as a Good Crypt. Otherwise, it is predicted as a Circular Crypt and therefore it is discarded

from subsequent steps. Figure 3.7 illustrates the circularity analysis of crypts.
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3.5 Discussion

Although the fully supervised methods make good predictions during inference time, training

them is a lengthy procedure. The data annotation process is time-consuming and exhaustive

in nature. Moreover during image segmentation, neither the cascaded system nor the Joint

Learner explicitly learn representations of clinically important parameters like tissue mor-

phology and the spatial relationships among different tissues. For a principled algorithm

design that is clinically useful, targeted tissue representations must be learnt while minimiz-

ing the annotation effort. For this, we propose self-supervised methods in the succeeding

chapters that make use of a larger unlabeled data corpus for learning targeted representa-

tions.
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Chapter 4

Literature Survey

The distribution of real world data is extremely complicated. It is of paramount importance

to separate the main factors of variation (called as the semantic structure) that are present in

our data distribution in order to arrive at a meaningful understanding of each of its samples.

Since self-supervised learning exploits unlabelled data to learn image abstractions, a de-

sirable property of any such method would be to meaningfully represent the semantic struc-

ture of the data they’ve been trained on. Popularly, there are two classes of self-supervised

methods - the contrastive learning (CL) methods and the non-constrastive learning (NCL)

methods.

The CL methods are essentially designed to perform instance-wise contrast leading to an

embedding space where all instances are well-separated, and each instance is locally smooth

(i.e. input with perturbations have similar representations). In other words, these methods

encourage intra-class compactness and inter-class separability in the representation space.

However, they suffer from a limitation: the representation is not encouraged to encode the

semantic structure of data. This is because these methods consider two samples as a negative

pairs as long as they are different instances in the training batch, regardless of whether or

not they contain similar semantic structures. This is magnified by the fact that many negative

samples are generated to form the contrastive loss which may contain similar semantic struc-

tures but are undesirably pushed apart in the representation space. Therefore, CL methods

intuitively make most sense when individual data instances contain homogeneous semantics

where all the structures in a particular data instance leads to a single semantic understanding
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of that data instance. Since medical images often contain heterogeneous semantic structures

in a single instance of data, using CL can be counter intuitive if our goal is to encode its

semantics.

A recent work [29] tries to overcome this limitation of poor semantic encoding of CL

methods using the so called prototypes. A prototype is defined as “a representative embed-

ding for a group of semantically similar instances”. They replace the representation of the

augmented view of data in the standard contrastive learning objective with this prototype.

Thus, each data instance is assigned to a prototype while performing CL. Although, this

well-designed heuristic provides a nice work-around for the limitations of conventional CL

and does indeed try to encode semantics, it doesn’t address the obvious question we asked at

the beginning of this exposition relevant to the case of data in histopathology.

Another limitation of CL methods is studied as the problem of class collison where there

is a possibility of contrasting two data instances actually belonging to the same class. [30]

provides concrete theoretical bounds to determine the conditions under which empirical per-

formance of CL methods will still be successful if sufficiently large negative instances of

data are sampled during the training despite the possibility of class collision. It concludes

“the empirical minimizer of the unsupervised loss learned using sufficiently large number of

samples will have good performance on supervised tasks” which basically translates to, “if

we throw more data at the model, it will eventually learn.”

On the other hand, the NCL methods focus on training deep models to solve pretext tasks,

which usually involve hiding certain information about the input and training the network to

recover the missing information. In computer vision related applications, several researchers

have proposed different self-supervised methods that focus on a variety of pretext tasks.

4.1 Self-Supervision by Solving Pretext Tasks

In computer vision related applications, several researchers have proposed different self-

supervised methods that focus on a variety of pretext tasks. A pretext task is a puzzle which

a model is asked to solve in order to capture representations that are naturally present in the

data. In images, it maybe color, shapes, context etc that can be artificially changed before
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asking the model to restore the images to their original state.

In [31], surrogate classes are constructed for training unsupervised models by applying

random translations, scaling, rotations and altering the contrast of sub image patches con-

taining objects or parts of objects. Given a set of transformed image patches of the same

kind, a loss is minimized between the transformed sample and its surrogate class.

In [32], the authors have swapped image patch positions to break the image context and

asked a deep CNN to reconstruct the original image. In the process, the model learns some

general features of the whole images in the dataset.

In [33], the authors illustrate yet another pretext task of jigsaw puzzle reassembly. In this

setting, given an image, the image patches are randomly jumbled and the model is asked to

reassemble the patches in the right order.

In another work [34], the authors create a classification based pretext task of predicting

one-of-N positions of an image patch given a reference image patch. In this, they choose a

random patch in the image treating it as a pivot and sample one of 8 different target patches

around it. These two patches are given as input to a deep CNN whose goal is to predict the

position (in terms of class labels) of the target patch relative to the pivot patch.

In [35], the authors introduce yet another pretext task of image recolorization. Here, they

feed the CNN with a grey-scale image and ask the model to predict colors in three different

channels (R,G,B) at the decoder output. A vast variety of methods like the ones cited above

focus on a single pretext task to learn self-supervised representations from images. While

these standalone pretext task methods work very well, it is interesting to inquire into the

viability of leveraging multiple pretext tasks together in a multi-task learning setting for

self-supervision.

In [36], an SSL model is made to learn features by inpainting masked regions of the

image. The masking happens on random image patches and the model is asked to paint

inside the masked region by looking at the original image.

In one work as described in [37], the authors design an SSL model that has different

decoder heads to solve multiple pretext tasks while having a common encoder. The idea is

to leverage the combined power of representations learnt by solving multiple pretext tasks in

a harmonised manner.
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Since, these methods try to reconstruct contextual semantics in images, they are better

suited to be applicable in our case when compared with CL methods where the notion of se-

mantics is limited to semantics in natural images that are often easily discernible. Although,

it must be noted that these methods explicitly or implicitly prescribe operations on image

pixels and not on the image structure.

It is noteworthy that these SSL methods use large corpora of unlabelled data to learn

strong representations by solving pretext tasks. Then, the learnt weights are finetuned on a

small labelled data corpus for target tasks. It has been shown that these methods either beat

state-of-the art fully supervised methods (trained on very large labelled datasets) or perform

at par with them (while being fine-tuned on only a small portion of the labelled data).

The pretext tasks that various self-supervised methods present learn generic image rep-

resentations. In the medical imaging setup with rich context information stored in various

tissues in terms of colour, morphology, texture and the relationships among different tissues

in the image, it is hard to explicitly say exactly what representations these generic pretext

tasks learn. In that, the generic pretext tasks such as jigsaw, relative patch prediction by

sampling random pivot patches etc learn poor representations. In other words, it is virtually

impossible to verify if the model has properly learnt to represent a certain kind of organ or a

tissue having clinical importance.

The SSL methods that solve generic pretext tasks cannot guarantee that they learn only

important representations. For example, if we were to apply the image context restoration as

a pretext task in the case of duodenal histology images by randomly sampling two patches

from the background of the image and swapping their positions, the model will learn repre-

sentations that are of no clinical significance. Similarly, if we perform the image inpainting

pretext (as in [36]) task by randomly masking sub patches in the background, a similar prob-

lem may occur.

More generally, in any medical imaging setup, a pretext task that is applied on regions of

no clinical significance like background or tissues that aren’t considered in the process of di-

agnosis (Denudated Villi in the case of duodenal biopsies or regions like the neck, shoulders

that are partially visible in chest X-rays.) will lead to learning unwanted representations.

In such cases, a better practice would be to apply pretext tasks specifically on regions
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of diagnostic importance. That would be to swap positions of sub patches (in the context-

resotoration pretext task) or mask only those sub patches (in the image inpainting pretext

task) that belong to a diagnostically relevant region.

Although, it is also worth noting that not all pretext tasks need guidance. For solving the

image recolorization task, it is better to convert the whole image into gray-scale rather than

just having small regions converted into gray for learning stronger colour representations.

Therefore, in this work, we describe two clinically guided pretext tasks. We conduct two

kinds of experiments. One method solves such a pretext task with deep feature reconstruction

and the other task involves reconstruction of image superpixels.

4.2 Prior Work

Since we are working with a completely novel and unique dataset, no direct prior work has

been conducted on it. However, [38] tackled the problem of predicting Celiac Disease by

proposing an end-to-end classifier. Given a histological slide, the algorithm classifies it as

either having Celiac Disease or non-specific duodentitis or simply classifies it as normal

tissue. Our methods introduce clinical knowledge into the learning process in the form of

pretext tasks and requires limited labelled data. A more recent work [39] proposes a machine

learning approach to detect Celiac disease based on the Marsh scoring system.

In contrast, we emphasize the clinical relevance of morphological patterns seen in histopatho-

logical slides. We develop self-supervised methods as opposed to fully supervised methods

in literature. Our proposed method attempts to incorporate learning of these morphologies

during the pre-training stage.
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Chapter 5

Self Supervised Learning methods

5.1 Introduction

In this chapter, three self-supervised learning methods are described. The first method uses a

popular unsupervised image segmentation algorithm that groups perceptually similar pixels

with each other and then masks them. Then, a neural network is asked to reconstruct the

noisy images thereby learning strong image representations.

The second method uses a very weak fully supervised model (mentor network) trained on

a very small number of labelled images and guides a self-supervised model (mentee network)

to learn stronger representations on a corpus of a larger unlabelled data by solving clinically

motivated pretext tasks on the duodenal biopsy dataset.

For both the methods, only unlabelled images are used during self-supervised pretraining.

Later, a small subset of labelled images is used for finetuning the semantic segmentation task.

However, for the second method - the same subset of labelled images is used for training the

weak mentor network.

Evidently, the role of unlabelled data is important for the success of these methods. Once

we have sufficient data to work with, the challenge then is to design the right pretext tasks.

But exactly how large should the unlabelled data corpus be is an open-ended question. The

findings in [40] show that even a single image suffices, with self-supervision and data aug-

mentation, to learn the first few layers of deep neural networks as well as using millions

of images and full supervision. For the deeper layers of the networks, its concluded that
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self-supervision remains inferior to strongly supervised methods even if millions of images

are used for training them. The authors also conclude that adding more unlabelled data is

unlikely to improve the performance of these models. For our experiments, we have used a

little over 1000 unlabelled images for pretraining.

5.2 Super Pixel Inpainting as a Pretext Task

A Super Pixel can be defined as a group of image pixels that share common perceptual

characteristics (like color intensity). Super Pixels provide more information about a region

inside an image as compared to pixels. They align better with edges in the image when

compared to simple rectangular image patches.

SLIC [41] is an unsupervised algorithm that uses the k-means clustering to give Super

Pixels. We use the SLIC algorithm to first identify Super Pixels in an image from the unla-

belled dataset DU . Figure 5.1 is an illustration of the training procedure for this method. The

Super Pixels inside the biopsy region are randomly masked. Figure 5.2 shows the masked

Super Pixels against the corresponding real histological image.

Figure 5.1: Super Pixel Inpainting as a self-supervision pretext task.
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The masked image is then given to a neural network for reconstruction. We use the

structural similarity [42] loss function during the pretraining step. Figure 5.3 shows the

reconstructed output corresponding to the masked input after the pretraining step. After

pretraining, the model weights are finetuned on the segmentation task using a small labelled

dataset DL. The idea is to learn the representations of tissues and other structures inside

the biopsy area that maybe useful for semantic segmentation and subsequently to identify

Interpretable Regions.

Figure 5.2: Masking of Super Pixels from a histological image. The masked image is fed to

a neural network for reconstruction during self-supervised pretraining.

Figure 5.3: The masked super pixels, the reconstructed output and the real image.
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5.3 Super pixel inpainting with morphology restoration

There are two limitations to the above method. In that, it isn’t designed to consider morpho-

logical features while doing image reconstruction. The other limitation is that, the inpainting

simply learns to fill the masked out pixels with a shade of pink, thus leading to a degenerate

solution. To focus on morphology and to avoid the degenerate condition, we propose a com-

plementary task that distorts the shapes of tissues using the method described in [43] and the

autoencoder is tasked with restoring the morphology of various tissues in the image.

In our experiments for this method, we use the SLIC algorithm to mask random super-

pixels from the H&E image and apply the elastic distortion on top of it. Figure 5.4 shows

the composite distortions on an HE image which is treated as an input at the pre-training

step in figure 5.1. The subsequent steps remain the same. We obtain an improvement in

performance with these modifications in our training mechanism. Table 5.1 shows the seg-

mentation performance with these changes. The implementation of this method can be found

here.

Figure 5.4: Composite distortion: Masking of super pixels along with morphology defor-

mation of a histological image. These images are fed to a neural network for reconstruction

during self-supervised pretraining.
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Tissue Finetuned (Proposed method) Full Supervision

Good Crypts 0.599 0.453

Good Villi 0.515 0.484

Epithelium 0.561 0.425

Average 0.558 0.454

Table 5.1: The performance comparison of the super pixel method with the fully supervised

method. 50 labelled images were used to train the supervised network. The same images

were used for finetuning. 1150 unlabelled images were used for self-supervision. Reported

metric is the Dice Score.

5.4 Deep Feature Reconstruction for Representation Learn-

ing of Tissue Morphology

Despite better performance of the Super Pixel method, we wish to gain fine-grained control

over what representations are exactly learnt. We design a novel pretext task for this purpose

called the Elastic Deformation and Masking (EDM). In that, this pretext task precisely targets

the classes of interest during the self-supervised pretraining stage. To do this, initially, we

train a fully supervised semantic segmentation model on a small labelled dataset DL. This

model is used for segmenting tissues from the unlabelled dataset DU . The outputs thus

obtained are treated as pseudolabels. Although noisy, they are used to randomly mask some

of segmented tissues (refer Figure 5.5).

The motivation is to specifically teach the model to learn the representations of tissues

like Good Crypts, Good Villi and Epithelium. Randomly masking some of these objects that

we get from the fully-supervised outputs motivates the model to do an inpainting task only

inside the specific tissue regions while elastic deformation will teach the model morpholog-

ical representations of these tissues.

Deep Feature Reconstruction: During Pretraining we motivate the self-supervised model

to partially mimic the latent features from the mentor network. Figure 5.6 shows the imple-

mentation idea. Ldf is MSE loss between the deep features of the supervised model and the

corresponding features of the SSL model. LSSIM is the structural similarity loss aplied be-
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Figure 5.5: The EDM pretext task. Good Villi, Good Crypts and Epithelium are masked and

deformed.

tween reconstructed image and the original input. The overall loss used during the training

procedure is given by:

L = LSSIM + λLdf (5.1)

Where λ is a hyperparameter set to 0.1. Table 5.2 shows the comparison of this method with

its fully supervised counterpart. Figure 5.7 shows the reconstructed image from the model.

It should be noted that the tissue morphologies have been reconstructed faithfully by the

proposed SSL model. These experiments are implemented here.

5.5 Implementation Details

For both the experiments, the backbone used is an Attention-Unet. The learning rate de-

creases from 10E-3 through 10E-6 with a step size of 0.1. The patience is set to 20. Training

stops if no improvement happens after 35 epochs. This setting is kept the same for both fine-

tuning as well as pretraining with unlabelled images. All experiments were conducted on

an NVIDIA V100 with 32GB RAM. We use 50 labelled images for finetuning, 40 labelled

images as validation images and a separate 60 labelled images for model evaluation.
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Figure 5.6: The elastic deformation and masking pretext task. Good Villi, Good Crypts and

Epithelium are masked and deformed.

Method Data Subset Crypts Villi Epithelium B. Gland Average

Full Supervision 50 DL 0.43 0.53 0.49 0.63 0.52

EDM 50 DL + 1150 DU 0.47 0.46 0.56 0.82 0.58

Full Supervision 300 labelled 0.68 0.6 0.64 0.85 0.69

EDM 50 DL + 1150 DU 0.68 0.64 0.67 0.84 0.71

Table 5.2: Performance comparison of the EDM method with fully supervised counterpart.

50 labelled images were used to train the supervised network. The same images were used

for finetuning. 1150 unlabelled images were used for self-supervision. Reported metric is

the Dice Score.

Figure 5.7: Tissue inpainting and Morphology restoration as a pretext-task
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Chapter 6

Conclusion

6.1 Summary

A novel richly annotated dataset of the human duodenum is introduced. Two fully super-

vised methods are described that perform localization of areas of interpretability. Two self-

supervised methods for learning meaningful representations of diagnostically important re-

gions in medical images are described. Two clinically motivated pretext tasks are introduced

which are shown to learn robust representations of specific tissue regions from the histolog-

ical images. With superior performance as compared to corresponding supervised baselines,

the study establishes some important directions which can be explored while developing

self-supervised learning methods for general medical image analysis using deep learning.

6.2 Future Work

6.2.1 Villi Lengths Measurement

For the Q-histological criteria, measuring of Villi lengths is important. Different heuristics

can be applied to measure the individual Villi Lengths but a neural method works the best.

We annotated 25 images demarcating the length along the Villous fingers. Then, this set is

randomly split into 20 train and 5 validation samples. A segmentation model is trained to

predict different strands of measurements that can be isolated as connected components and
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measured individually. Focal Tversky loss is used to handle the thin segments that implicitly

cause class imbalance. We achieve a dice score of 53% over Villi measurements given the

Villi mask priors. Future work is motivated in this direction where these outputs could be

post processed to obtain accurate measurements of individual Villous Lengths. Along with

this, the measurement of Crypt depths should be performed for a complete software solution

to automatically grade Celiac Disease. The implementation for Villi lengths measurement

can be found here.

Figure 6.1: Sample predictions by the segmentations for demarcating the Villi lengths.

6.2.2 Counting Intra-Epithelial Lymphocytes

Counting the Intra-Epithelial Lymphocytes (IELs) in the epithelial region of the Villi is an-

other important quantitative parameter in the Q-histology classification system. We exhaus-

tively annotated 65 images for IELs. Out of these, we used 45 images for training and 8 were

used for validation. Various data augmentation techniques were done to compensate for the

limited data. This problem can be formulated as an object detection problem. However, the

IELs are extremely small when compared to the size of the image.

To circumvent this issue and retain global context at the same time, we use EfficientDet

for localization. Since the Epithelial region on the periphery of the Villi are important, we use

a segmentation network to first segment out this region. Once that’s done, we mask the whole

image and retain only the Epithelial Belts during training. Of the visible pixels, we make

patches containing IELs and these patches are given to the object detection model to localise

the tiny cells. Figure 6.2 illustrates this process visually. The mAP score we obtain with this
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Figure 6.2: Cascading Networks for detecting IELs in high resolution.

method is 0.34. We find that this score is significantly boosted (0.54) when the ground truth

epithelial belts are supplied to the network during training. Hence, we motivate future work

to solve the bottleneck of accurately segmenting the epithelial belts at the periphery of the

Villi. Find the implementation of IEL counting here.
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